Introduction to Oxidation-Reduction (Redox) Reactions

In Unit 4, you have seen examples of the following reaction types.

precipitation reaction: Two aqueous solutions of ionic compounds are combined. The cations of one solution combine with the anions of another solution to form an insoluble ionic compound, known as a precipitate.

acid-base reaction: A Bronsted-Lowry acid (H^+ donor) reacts with a Bronsted-Lowry base (H^+ acceptor). The H^+ is transferred from the acid to the base.

We will now study another type of reaction known as oxidation-reduction or redox.

Consider the following balanced chemical equation for the reaction between magnesium (Mg) and oxygen (O_2) .

 $2 \text{ Mg}(s) + O_2(g) \rightarrow 2 \text{ MgO}(s)$

This equation can be split up into two separate processes.

An atom of Mg changes into a Mg ²⁺ ion	A molecule of O ₂ changes into two O ²⁻ ions
$Mg \rightarrow Mg^{2+}$	$O_2 \rightarrow 2 O^{2-}$

You should know and understand each of the following definitions about oxidation and reduction.

oxidation: a substance loses electrons reduction: a substance gains electrons

You can use the mnemonic device OIL RIG to help you remember these definitions.

OIL: Oxidation is the Loss of electrons **RIG**: Reduction is the Gain of electrons

Equations that show either oxidation or reduction separately are known as half-reactions.

- In an oxidation half-reaction, electrons appear on the right side of the equation.
- In a reduction half-reaction, electrons appear on the left side of the equation.

The half-reactions for the reaction involving Mg and O_2 are written as follows. Notice that the overall charge is balanced on both sides of the equation.

Oxidation Half-Reaction	Reduction Half-Reaction
$Mg \rightarrow Mg^{2+} + 2 e^{-}$	$4 e^- + O_2 \rightarrow 2 O^{2-}$

- The number of electrons lost in the oxidation half-reaction must be equal to the number of electrons gained in the reduction half-reaction.
- One (or both) of the half-reactions may need to be multiplied by a certain number so that the electrons can be cancelled out on both sides of the equation.
- When the two half-reactions are added together, you should get the overall balanced redox equation.

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(Note that this half-reaction was multiplied by 2)
$2 \text{ Mg} + \text{O}_2 \rightarrow 2 \text{ MgO}$	(Electrons do not appear in the overall redox equation.)

In each of the following, you are given two separate half-reactions. You need to add the two half-reactions together to produce a balanced redox equation based on the rules listed on the previous page.

1	
T	•

Oxidation Half-Reaction	Reduction Half-Reaction
$Zn \rightarrow Zn^{2+} + 2 e^{-}$	$2 e^- + 2 \mathrm{H}^+ \rightarrow \mathrm{H}_2$

2	
L	•

Oxidation Half-Reaction	Reduction Half-Reaction
Al \rightarrow Al ³⁺ + 3 e^-	$2 e^- + Cu^{2+} \rightarrow Cu$

3.

Oxidation Half-Reaction	Reduction Half-Reaction
$\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+} + e^{-}$	$5 e^- + MnO_4^- + 8 H^+ \rightarrow Mn^{2+} + 4 H_2O$

4.

Oxidation Half-Reaction	Reduction Half-Reaction
$2 \operatorname{Cl}^- \rightarrow \operatorname{Cl}_2 + 2 e^-$	$6 e^{-} + 14 \text{ H}^{+} + \text{Cr}_2 \text{O}_7^{2-} \rightarrow 2 \text{ Cr}^{3+} + 7 \text{ H}_2 \text{O}$

5.

Oxidation Half-Reaction	Reduction Half-Reaction
Ni \rightarrow Ni ²⁺ + 2 e^-	$3 e^- + 4 H^+ + NO_3^- \rightarrow NO + 2 H_2O$

Oxidation Numbers

In an oxidation-reduction (redox) reaction, electrons are transferred from the substance that is oxidized to the substance that is reduced. One of the ways to recognize that a reaction is a redox reaction is to look for changes in the oxidation numbers of the elements involved.

Oxidation numbers are a bookkeeping system that is used to keep track of any changes in electrons being gained or lost. The following rules are used when assigning oxidation numbers to the atoms in a molecule or an ion.

Rule	Examples
#1: For an atom in its elemental form, the oxidation number is zero.	$H_2 = zero$ $Li = zero$ $N_2 = zero$
#2: For a monoatomic ion, the oxidation number is the charge on the ion.	$Na^+ = +1$ $Mg^{2+} = +2$ $Cl^- = -1$
#3: The oxidation number of Group 1 metals is +1 in all compounds, and the oxidation number of Group 2 metals is +2 in all compounds.	Na = +1 in compounds such as NaCl, NaNO ₃ , and Na ₂ O. Mg = +2 in compounds such as MgBr ₂ , MgSO ₄ , and MgS.
#4: The oxidation number of F is -1 in all compounds.	F = -1 in compounds such as NaF, CH ₃ F, and HF.
#5: The oxidation number of H is usually +1 when bonded to nonmetals and -1 when bonded to metals.	H = +1 in compounds such as H ₂ O, NH ₄ Cl, and CH ₄ . H = -1 in compounds such as LiH, NaH, and CaH ₂ .
#6: The oxidation number of O is usually -2 in most compounds. Two important exceptions are H_2O_2 and OF_2 .	O = -2 in compounds such as CO_2 , KNO ₃ , and H ₂ SO ₄ . O = -1 in H ₂ O ₂ O = +2 in OF ₂
#7: The oxidation number of Cl, Br, and I is –1 in most binary compounds. However, the oxidation number of Cl, Br, and I has a positive value when bonded with O or F.	Cl = -1 in compounds such as KCl, CCl ₄ , and SCl ₂ . Cl = $+1$ in NaClO and HClO Cl = $+3$ in NaClO ₂ and HClO ₂ Cl = $+5$ in NaClO ₃ and HClO ₃ Cl = $+7$ in NaClO ₄ and HClO ₄

- The sum of the oxidation numbers of all atoms in a neutral compound is equal to zero.
- The sum of the oxidation numbers of all atoms in a polyatomic ion is equal to the overall charge on the polyatomic ion.

6. Based on the rules on the previous page, assign oxidation numbers to each atom in each substan	ostance.
---	----------

Substance		Oxidation	Numbers	
Fe	Fe =			
Cl ₂	C1 =			
P4	P =			
NaBr	Na =	Br =		
Ca ₃ N ₂	Ca =	N =		
Fe ₂ O ₃	Fe =	O =		
MgS	Mg =	S =		
SO ₂	S =	O =		
CH ₃ F	C =	H =	$\mathbf{F} =$	
CHF3	C =	H =	$\mathbf{F} =$	
СО	C =	O =		
OF ₂	O =	$\mathbf{F} =$		
H ₂ O ₂	H =	O =		
КН	K =	H =		
CaH ₂	Ca =	H =		
HBr	H =	Br =		
HBrO	H =	Br =	O =	
HBrO ₂	H =	Br =	O =	
HBrO ₃	H =	Br =	O =	
Na ₂ CO ₃	Na =	C =	O =	
BaCrO ₄	Ba =	Cr =	O =	
NH4 ⁺	N =	H =		
OH [_]	O =	H =		
NO ₃ ⁻	N =	O =		
ClO ₄ -	C1 =	O =		
SO3 ²⁻	S =	O =		
SO4 ²⁻	S =	O =		
Cr ₂ O ₇ ^{2–}	Cr =	O =		
PO4 ³⁻	P =	O =		
H_3O^+	H =	O =		

- 7. Each of the following equations represents an oxidation-reduction reaction.
 - Assign oxidation numbers to each element on each side of the equation.
 - Determine which element is oxidized and which element is reduced in the reaction.
 - If the oxidation number increases, the element is oxidized.
 - If the oxidation number decreases, the element is reduced.

	Element	Element
Balanced Equation	that is	that is
	Oxidized	Reduced
$N_2 + 3 H_2 \rightarrow 2 NH_3$		
N = H = N = H =		

	Balanced Equation							Element that is Oxidized	Element that is Reduced
	3	Fe(NO ₃)	2 + 2 Al	\rightarrow 3 F	e + 2 A	$(NO_3)_3$			
Fe =	N =	0 =	Al =	Fe =	N =	O =	Al=		

		ed Equation Element Oxidized	that is		
	2	$\rightarrow 2 \ Br^- \ + \ 6 \ H_2O \ + \ 3 \ N_2$			
Br =	O =	N =	H =	Br = O = N = H =	

Balanced Equation	Element that is Oxidized	Element that is Reduced
$P_4 + 10 \text{ HClO} + 6 \text{ H}_2\text{O} \rightarrow 4 \text{ H}_3\text{PO}_4 + 10 \text{ HCl}$		
P = H = Cl = O = P = H = Cl = O =		

Balancec	Element that is Oxidized	Element that is Reduced				
$2 C_2 H_6 + 7 O_2 -$						
C = H = O =	C =	H =	O =			

	Balanced Equation							Element that is Oxidized	Element that is Reduced	
	$Mn + H_2SO_4 \rightarrow MnSO_4 + H_2$									
Mn =	Η=	S =	O =	Mn =	Η=	S =	0 =			

8. Classify each of the following reactions as precipitation, acid-base, or redox.

Balanced Equation for the Reaction	Reaction Type
$\operatorname{Zn}(s) + 2 \operatorname{HCl}(aq) \rightarrow \operatorname{ZnCl}_2(aq) + \operatorname{H}_2(g)$	
$Ca(OH)_2(aq) + 2 HCl(aq) \rightarrow CaCl_2(aq) + 2 H_2O(l)$	
$\operatorname{AgNO}_3(aq) + \operatorname{HCl}(aq) \rightarrow \operatorname{AgCl}(s) + \operatorname{HNO}_3(aq)$	
$2 \operatorname{KOH}(aq) + \operatorname{H}_2 \operatorname{SO}_4(aq) \rightarrow 2 \operatorname{H}_2 \operatorname{O}(l) + \operatorname{K}_2 \operatorname{SO}_4(aq)$	
$Pb(NO_3)_2(aq) + K_2SO_4(aq) \rightarrow 2 KNO_3(aq) + PbSO_4(s)$	
$PbS(s) + 4 H_2O_2(aq) \rightarrow 4 H_2O(l) + PbSO_4(s)$	

Net Ionic Equations

9. For each of the following redox reactions, write the balanced net ionic equation.

(a) $Ca(s) + 2 HCl(aq) \rightarrow CaCl_2(aq) + H_2(g)$

(b) $2 \operatorname{Fe}(s) + 6 \operatorname{HBr}(aq) \rightarrow 2 \operatorname{FeBr}_3(aq) + 3 \operatorname{H}_2(g)$

(c) $\operatorname{Zn}(s) + \operatorname{Ni}(\operatorname{NO}_3)_2(aq) \rightarrow \operatorname{Zn}(\operatorname{NO}_3)_2(aq) + \operatorname{Ni}(s)$

(d) $Al(s) + 3 AgNO_3(aq) \rightarrow Al(NO_3)_3(aq) + 3 Ag(s)$

(e) $\operatorname{Cu}(s) + 4 \operatorname{HNO}_3(aq) \rightarrow \operatorname{Cu}(\operatorname{NO}_3)_2(aq) + 2 \operatorname{H}_2\operatorname{O}(l) + 2 \operatorname{NO}_2(g)$

(f) $Br_2(aq) + 2 KI(aq) \rightarrow 2 KBr(aq) + I_2(aq)$