Questions and Problems

Concept of Equilibrium and the Guilibrium Constant

Review Questions

Define equilibrium. Give two examples of a dynamic equilibrium.

- Explain the difference between physical equilibrium and chemical equilibrium. Give two examples of each. 14.2 What is the law of mass action?
 - Briefly describe the importance of equilibrium in the
- study of chemical reactions.

Equilibrium Constant Expressions

Review Questions

- Define homogeneous equilibrium and heterogeneous equilibrium. Give two examples of each.
- What do the symbols K_c and K_P represent? 14.6
 - Write the expressions for the equilibrium constants K_P of the following thermal decomposition reactions:
 - (a) $2NaHCO_3(s) \Longrightarrow$

$$Na_2CO_3(s) + CO_3(s) + H_2O(g)$$

(b)
$$2\text{CaSO}_4(s) \iff 2\text{CaO}(s)$$

- Write equilibrium constant maps and for $K_{\rm c}$, and for K_P , if applicable, for the feature processes:
- (a) $2CO_2(g) \rightleftharpoons 2CO(g) + O_2(g)$
- (b) $3O_2(g) \rightleftharpoons 2O_3(g)$
- (c) $CO(g) + Cl_2(g) \Longrightarrow COCl_2(g)$
- (d) $H_2O(g) + C(s) \Longrightarrow CO(g) + H_2(g)$
- (e) $HCOOH(aq) \rightleftharpoons H^+(aq) + HCOO^-(aq)$
- (f) $2\text{HgO}(s) \rightleftharpoons 2\text{Hg}(l) + O_2(g)$
- Write the equilibrium constant expressions for $K_{\rm c}$ and K_P , if applicable, for the following reactions:
- (a) $2NO_2(g) + 7H_2(g) \Longrightarrow 2NH_3(g) + 4H_2O(l)$
- (b) $2\operatorname{ZnS}(s) + 3\operatorname{O}_2(g) \Longrightarrow 2\operatorname{ZnO}(s) + 2\operatorname{SO}_2(g)$
- (c) $C(s) + CO_2(g) \rightleftharpoons 2CO(g)$
- $(d) C_6H_5COOH(aq) \rightleftharpoons$

$$C_c H_c COO^-(qq) + H^+(qq)$$

- Write the equation relating K_c to K_P , and define all
- What is the rule for writing the equilibrium con-Stant for the overall reaction involving two or more
- Give an example of a multiple equilibria reaction.
- The equilibrium constant for the reaction $A \rightleftharpoons B$ is k equilibrium constant for the reaction $A \rightleftharpoons B$ here is $K_c = 10$ at a certain temperature. (1) Starting with only reactant A, which of the diagrams shown here only reactant A, which or

 Levels: • Easy • Medium ••• Difficult.

best represents the system at equilibrium? (2) Which of the diagrams best represents the system at equilibrium if $K_c = 0.10$? Explain why you can calculate K_c in each case without knowing the volume of the container. The gray spheres represent the A molecules and the green spheres represent the B molecules.

• 14.14 The following diagrams represent the equilibrium state for three different reactions of the type $A + X \Longrightarrow AX (X = B, C, or D)$:

 $A + B \rightleftharpoons AB$

 $A + C \rightleftharpoons AC$

 $A + D \rightleftharpoons AD$

- (a) Which reaction has the largest equilibrium constant? (b) Which reaction has the smallest equilibrium constant?
- 14.15 The equilibrium constant (K_c) for the reaction

$$2HCl(g) \rightleftharpoons H_2(g) + Cl_2(g)$$

is 4.17×10^{-34} at 25°C. What is the equilibrium constant for the reaction

$$H_2(g) + Cl_2(g) \Longrightarrow 2HCl(g)$$

at the same temperature?

• 14.16 Consider the following equilibrium process at 700°C:

$$2H_2(g) + S_2(g) \Longrightarrow 2H_2S(g)$$

Analysis shows that there are 2.50 moles of H₂, 1.35×10^{-5} mole of S₂, and 8.70 moles of H₂S present in a 12.0-L flask. Calculate the equilibrium constant K_c for the reaction.

• 14.17 What is K_P at 1273°C for the reaction

$$2CO(g) + O_2(g) \rightleftharpoons 2CO_2(g)$$

if K_c is 2.24×10^{22} at the same temperature?

•• 14.48 The equilibrium constant K_c for the reaction

$$H_2(g) + CO_2(g) \Longrightarrow H_2O(g) + CO(g)$$

is 4.2 at 1650°C. Initially 0.80 mol $\rm H_2$ and 0.80 mol CO₂ are injected into a 5.0-L flask. Calculate the concentration of each species at equilibrium.

Factors That Affect Chemical Equilibrium Review Questions

- 14.49 Explain Le Châtelier's principle. How can this principle help us maximize the yields of reactions?
- 14.50 Use Le Châtelier's principle to explain why the equilibrium vapor pressure of a liquid increases with increasing temperature.
- 14.51 List four factors that can shift the position of an equilibrium. Only one of these factors can alter the value of the equilibrium constant. Which one is it?
- 14.52 Does the addition of a catalyst have any effects on the position of an equilibrium?

Problems

Consider the following equilibrium system involv-• 14.53 ing SO₂, Cl₂, and SO₂Cl₂ (sulfuryl dichloride):

$$SO_2(g) + Cl_2(g) \Longrightarrow SO_2Cl_2(g)$$

Predict how the equilibrium position would change if (a) Cl₂ gas were added to the system; (b) SO₂Cl₂ were removed from the system; (c) SO₂ were removed from the system. The temperature remains constant.

• 14.54 Heating solid sodium bicarbonate in a closed vessel establishes the following equilibrium:

$$2\text{NaHCO}_3(s) \rightleftharpoons \text{Na}_2\text{CO}_3(s) + \text{H}_2\text{O}(g) + \text{CO}_2(g)$$

What would happen to the equilibrium position if (a) some of the CO₂ were removed from the system;

- (b) some solid Na₂CO₃ were added to the system;
- (c) some of the solid NaHCO3 were removed from the system? The temperature remains constant.
- 14.55 Consider the following equilibrium systems:

(a)
$$A \rightleftharpoons 2B$$

$$\Delta H^{\circ} = 20.0 \text{ kJ/mol}$$

(b)
$$A + B \rightleftharpoons C$$

$$\Delta H^{\circ} = -5.4 \text{ kJ/mol}$$

(c)
$$A \rightleftharpoons B$$

$$\Delta H^{\circ} = 0.0 \text{ kJ/mol}$$

Predict the change in the equilibrium constant K_c that would occur in each case if the temperature of the reacting system were raised.

- 14.56 What effect does an increase in pressure have on each of the following systems at equilibrium? The temperature is kept constant and, in each case, the reactants are in a cylinder fitted with a movable piston.
 - (a) $A(s) \rightleftharpoons 2B(s)$
 - (b) $2A(l) \Longrightarrow B(l)$
 - (c) $A(s) \rightleftharpoons B(g)$

(d)
$$A(g) \rightleftharpoons B(g)$$

(e)
$$A(g) \rightleftharpoons 2B(g)$$

Consider the equilibrium •• 14.57

$$2I(g) \Longrightarrow I_{2}(g)$$

What would be the effect on the position of equipments of the control of the cont what would be and rium of (a) increasing the total pressure on the system its volume; (b) adding I₂ to the by decreasing its volume; (b) adding I_2 to the reaction and (c) decreasing the temperature? mixture; and (c) decreasing the temperature?

• 14.58 Consider the following equilibrium process:

PCl₅(g)
$$\rightleftharpoons$$
 PCl₃(g) + Cl₂(g) $\Delta H^{\circ} = 92.5 \text{ kJ}_{\text{Total}}$

Predict the direction of the shift in equilibrium (a) the temperature is raised; (b) more chloring gain added to the reaction mixture; (c) some PC13 18 to mixture: (d) the promoved from the mixture; (d) the pressure on the gases is increased; (e) a catalyst is added to the real tion mixture.

Consider the reaction • 14.59

$$2SO_2(g) + O_2(g) \Longrightarrow 2SO_3(g) \quad \Delta H^\circ = -198.2 \text{ kJ}_{\text{max}}$$

Comment on the changes in the concentrations of SO_2 , O_2 , and SO_3 at equilibrium if we were to (a) in crease the temperature; (b) increase the pressure; (c) increase SO2; (d) add a catalyst; (e) add helium? constant volume.

In the uncatalyzed reaction • 14.60

$$N_2O_4(g) \Longrightarrow 2NO_2(g)$$

the pressure of the gases at equilibrium are $P_{N,0}$: 0.377 and $P_{NO_2} = 1.56$ atm at 100°C. Wh would appen to these pressures if a catalyst we added to the mixture?

•• 14.61 Consider the gas-phase reaction

$$2CO(g) + O_2(g) \Longrightarrow 2CO_2(g)$$

Predict the shift in the equilibrium position when h lium gas is added to the equilibrium mixture (a) constant pressure and (b) at constant volume.

Consider the following equilibrium reaction in •• 14.62 closed container:

$$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$

What will happen if (a) the volume is increase (b) some CaO is added to the mixture; (c) & CaCO₃ is removed; (d) some CO₂ is added to mixture; (e) a few drops of a NaOH solution added to the mixture; (f) a few drops of a HCIS tion are tion are added to the mixture (ignore the reaction tween CO₂ and water); (g) temperature is increase

Additional Problems

Consider the statement: "The equilibrium constant of a road" of a reacting mixture of solid NH₄Cl and gast