Chapter 4: Reactions in Aqueous Solutions

M-moles

Molarity Calculations

Calculate the molarities of the following solutions:

- 1) 2.3 moles of sodium chloride in 0.45 liters of solution.
- 2) 1.2 moles of calcium carbonate in 1.22 liters of solution.
- 3) 0.09 moles of sodium sulfate in 12 mL of solution.
- 4) 0.75 moles of lithium fluoride in 65 mL of solution.
- 5) 0.8 moles of magnesium acetate in 5 liters of solution.
- 6) 120 grams of calcium nitrite in 240 mL of solution.
- 7) 98 grams of sodium hydroxide in 2.2 liters of solution.
- 8) 1.2 grams of hydrochloric acid in 25 mL of solution.
- 9) 45 grams of ammonia in 0.75 L of solution.

Explain how you would make the following solutions. You should tell how many grams of the substance you need to make the solution, not how many moles.

- 10) 2 L of 6 M HCI
- 11) 1.5 L of 2 M NaOH
- 12) 0.75 L of 0.25 M Na₂SO₄
- 13) 45 mL of 0.12 M sodium carbonate
- 14) 250 mL of 0.75 M lithium nitrite
- 15) 56 mL of 1.1 M iron (II) phosphate
- 16) 6.7 L of 4.5 M ammonium nitrate
- 17) 4.5 mL of 0.05 M magnesium sulfate
- 18) 90 mL of 1.2 M BF₃

well-

Molarity Practice Problems

- How many grams of potassium carbonate are needed to make 200 mL of a 2.5 M solution?
- 2) How many liters of 4 M solution can be made using 100 grams of lithium bromide?
- 3) What is the concentration of a 450 mL solution that contains 200 grams of iron (II) chloride?
- 4) How many grams of ammonium sulfate are needed to make a 0.25 M solution at a concentration of 6 M?
- 5) What is the concentration of a solution that has a volume of 2.5 L and contains 660 grams of calcium phosphate?
- 6) How many grams of copper (II) fluoride are needed to make 6.7 liters of a 1.2 M solution?

7) How many liters of 0.88 M solution can be made with 25.5 grams of lithium fluoride? What is the concentration of a solution that with a volume of 660 that 8) contains 33.4 grams of aluminum acetate? How many liters of 0.75 M solution can be made using 75 grams of lead 9) (II) oxide? 10) How many grams of manganese (IV) oxide are needed to make a 5.6 liters of a 2.1 M solution? What is the concentration of a solution with a volume of 9 mL that 11) contains 2 grams of iron (III) hydroxide? How many liters of 3.4 M solution can be made using 78 grams of 12) isopropanol (C₃H₈O)? What is the concentration of a solution with a volume of 3.3 mL that 13) contains 12 grams of ammonium sulfite?

Dilutions Worksheet

1)	If I have 340 mL of a 0.5 M NaBr solution, what will the concentration be if
	I add 560 mL more water to it?

2) If I dilute 250 mL of 0.10 M lithium acetate solution to a volume of 750 mL, what will the concentration of this solution be?

3) If I leave 750 mL of 0.50 M sodium chloride solution uncovered on a windowsill and 150 mL of the solvent evaporates, what will the new concentration of the sodium chloride solution be?

4) To what volume would I need to add water to the evaporated solution in problem 3 to get a solution with a concentration of 0.25 M?

Oxidation State Worksheet

In each of the following chemicals, determine the oxidation states of each element:

1)	sodium nitrate
2)	ammonia
3)	zinc oxide
4)	water
5)	calcium hydride
6)	carbon dioxide
7)	nitrogen
8)	sodium sulfate
9)	aluminum hydroxide
10)	magnesium phosphate
In eac reduc	ch of the following reactions, determine what was oxidized and what was ed.
11)	$Ca + H_2O \rightarrow CaO + H_2$
	Element oxidized:
	Element reduced:
12)	$2 H_2 + O_2 \rightarrow 2 H_2O$
	Element oxidized:
	Element reduced:

1. Determine the oxidation number of each element in the following ions or compounds:

a)

d) CaH₂

b) C₂O₄²⁻

e) H₂SiO₄

c) F₂

- f) SO₄²⁻
- 2. Determine the oxidation number of each element in the following ions or compounds:
 - a) SF₆

d) N₂O₄

b) H₂AsO₄

e) PCl₄⁺

c) UO2+

- f) XeO_4^{2-}
- 3. Which of the following reactions is (are) oxidation-reduction reactions?
 - a) $Zn(s) + 2 NO_3^-(aq) + 4 H^+(aq) \rightarrow Zn^{2+}(aq) + 2 NO_2(g) + 2 H_2O(1)$
 - b) $Zn(OH)_2(s) + H_2SO_4(aq) \rightarrow ZnSO_4(aq) + 2 H_2O(1)$
 - c) $Ca(s) + 2 H_2O(1) \rightarrow Ca(OH)_2(s) + H_2(g)$
 - d) $2 \text{ Ca(s)} + O_2(g) \rightarrow 2 \text{ CaO(s)}$
 - e) $Ca(OH)_2(s) + 2 HCl(aq) \rightarrow CaCl_2(aq) + 2 H_2O(1)$
 - f) $2 \text{ Mg(s)} + O_2(g) \rightarrow 2 \text{ MgO(s)}$
 - g) $Si(s) + 2 Cl_2(g) \rightarrow SiCl_4(l)$

Period	Date	,	,	/
CILCO	_ ~~~			

NAMING ACIDS

"ate" becomes "ite" becomes "ide" becomes	"oı	acid" is acid" ic acid	l		in sulfur compo	ounds, ad	d "ur" ds, add "or	,	
bromate	Br03	HBrO3	Bromicac	cid	perchlorate			•	
periodate					bisulfate*				
çarbonate					hypoiodite			***************************************	
peroxide*					bicarbonate*				
chloride					sulfate				
chlorite		-			iodite		-	W	
thiosulfate		,			acetate				
sulfide					iodide				
dichromate				,	bromide		-		The same of the sa
hypobromite					hydroxide*				The same of the sa
sulfite					phosphate				
chromate					hypochlorite		•		
permanganate				•	phosphite				
iodate			-		oxide*			• Shahan sa Managara	
perbromate					fluoride			-	
cyanide	-		<u></u>		thiocyanate				
chlorate					bromite				
nitrate					nitrite				

= be careful

Vame .	 					
Period	 Date	/	/	/		

NAMING

Haw To Decomine		Acids	Molecular
How To Recognize	Recognize + and - ion	H+ and - ion	Not Ionic
How To Name	names of + ion then - ion	"ides" → hydroic acid "ates" →ic acid "ites" →ous acid S (add "ur") P (add "or")	mono, di, tri, tetra, penta, hexa, hepta, octa, nona ,deca names ends with "ide" pentaoxide → pentoxide, etc.

Indicate the Type of Compound and then name the compound using the appropriate rules:

1.	NaF	工	Sodium Fluoride	21.	CuCl ₂		
2.	$FeCl_3$			22.	AgNO ₃	-	
3.	CO_2			23.	СО		-
4.	MgCl ₂			24.	H ₃ PO ₄		
5.	HF			25.	NaCl		
6.	SF ₄	-		26.	N_2O_5		
7.	$HC_2H_3O_2$	-	,	27.	NO_2		
8.	H ₂ O		·	28.	HNO ₃		
9.	NH ₃			29.	NaOH		
10.	CaO	1		30.	SnCl ₂		All 100 miles 10
11.	NH ₄ NO ₃			31.	CaSO ₄		
12.	NaI			32.	HBr		
13.	PbCO ₃		***************************************	33.	Cu(OH) ₂		
14.	Na ₂ O	-		34.	Zn(OH) ₂	M	
15.	Ba(NO ₃) ₂			35.	BaCl ₂		
16.	K ₂ CrO ₄			36.	PCl ₅		
17.	NO			37.	PCl ₃		
18.	HC1			38.	AsF ₅		
					H ₂ CO ₃		
20.	H_2S			40.		- Control of the Cont	
					_		

Precipitate Practice #1

Write balanced molecular and detailed ionic equations. Strike out any spectator ions.

- 1. Solutions of lead nitrate and potassium chloride are mixed.
- 2. Solutions of sodium sulfate and calcium bromide are mixed.
- 3. Solutions of aluminum acetate and lithium hydroxide are mixed.
- 4. Solutions of iron(III) sulfate and sodium sulfide are mixed.
- 5. Solutions of aluminum sulfate and calcium hydroxide are mixed.
- 6. Solutions of potassium chromate and lead acetate are mixed.
- 7. Solutions of silver nitrate and ammonium sulfide are mixed.

Name		
Period	Date//	

Precipitate Practice #1

- A. Write balanced molecular reaction included phases
- B. On another sheet of paper write a complete ionic equations
- C. Strike out any spectator ions and write a net ionic equation
- 1. Solutions of lead (Π) nitrate and potassium chloride are mixed.
- 2. Solutions of sodium sulfate and calcium bromide are mixed.
- 3. Solutions of aluminum acetate and lithium hydroxide are mixed.
- 4. Solutions of iron(III) sulfate and sodium sulfide are mixed.
- 5. Solutions of aluminum sulfate and calcium hydroxide are mixed.
- 6. Solutions of potassium chromate and lead (II) acetate are mixed.
- 7. Solutions of silver nitrate and ammonium sulfide are mixed.

Electrolytes

Strong Electrolytes

Strong Bases Ionize 100%

Strong Acids

Ionic compounds Salt Metal + nonmetal NaCl

Weak Electrolytes

Partially Ionize

Weak Bases NH₃

Weak Acids

Non-electrolytes

Molecule/don't ionize

Molecular compound

Nonmetal + nonmetal CH_3CN $C_6H_6O_6$

Chapter 4: Worksheet #3: Molecular, Net Ionic Equations, Solubility Rules, & Redox

1. Write the net ionic equations for each of the following unbalanced molecular equations.

 \bigcirc Na₃PO₄(aq) + \bigcirc AgNO₃(aq) - NaNO₃(aq) + Ag₃PO₄(s)

B $K_2SO_4(aq) + BaCl_2(aq) - BaSO_4(s) + KCl(aq)$

 \bigcirc Hg₂(NO₃)₂(aq) + CaCl₂(aq) \longrightarrow Ca(NO₃)₂(aq) + Hg₂Cl₂(s)

2. Using the solubility rules, predict the products, balance the equation, and write the complete ionic and net ionic equations for each of the following reactions.

B AgClO₃(aq) + KCl(aq)

(C) KOH(aq) + Fe(NO₃)₃(aq)

 \bigcirc ZnCl₂(aq) + H₂S(aq) -

E Na₃PO₄(aq) + CaCl₂(aq)

-14,29-30, Chapter Four Types of Chemical Reactions and Solution Stoichiometry

- 3. You have a sugar solution (solution A) with concentration x. You pour one-fourth of this solution into a beaker, and add an equivalent volume of water (solution B).
 - a. What is the ratio of sugar in solutions A and B?
 - b. Compare the volumes of solutions A and B.
 - c. What is the ratio of the concentrations of sugar in solutions A and B?
- 4. You add an aqueous solution of lead nitrate to an aqueous solution of potassium iodide. Draw highly magnified views of each solution individually, and the mixed solution including any product that forms. Write the balanced equation for the reaction.
- 5. Order the following molecules from lowest to highest oxidation state of the nitrogen atom: HNO3, NH4Cl, N2O, NO2,
- 6. Why is it that when something gains electrons, it is said to be reduced? What is being reduced?
- 7. Consider separate aqueous solutions of HCl and $\mathrm{H}_2\mathrm{SO}_4$ with the same molar concentrations. You wish to neutralize an aqueous solution of NaOH. For which acid solution would you need to add more volume (in milliliters) to neutralize the base?
 - a. the HCl solution
 - **b.** the H₂SO₄ solution
 - c. You need to know the acid concentrations to answer this question.
 - d. You need to know the volume and concentration of the NaOH solution to answer this question.
 - e. c and d Explain.

180

はつか、海上海 もっこの治 海りの

8. Draw molecular-level pictures to differentiate between concentrated and dilute solutions.

A blue question or exercise number indicates that the answer to that question or exercise appears at the back of this book and a solution appears in the Solutions Guide.

Questions

- 9. Distinguish between the terms slightly soluble and weak elec-
- 10. How would you determine experimentally whether a substance is a strong or weak electrolyte?

Exercises

In this section similar exercises are paired.

Agyeous Solutions: Strong and Weak Electrolytes

show how each of the following strong electrolytes "breaks up" into its component ions upon dissolving in water.

- a. NaBr f. FeSO₄ b. MgCl₂ g. KMnO4
- c. $AI(NO_3)_3$ h. HClO₄ **d.** $(NH_4)_2SO_4$ i. NH₄C₂H₃O₂ (ammonium ac
- e. HI show how each of the following strong acids or strong
- "breaks up" into its component ions upon dissolving
 - a. HCl b. HNO₃

 - c. Ca(OH)₂
 - d. KOH
- 13. Calcium chloride is a strong electrolyte and is used t streets in the winter to melt ice and snow. Write a rea show how this substance breaks apart when it disso water.
- 14. Commercial cold packs and hot packs are available for ing athletic injuries. Both types contain a pouch of wa a dry chemical. When the pack is struck, the pouch o breaks, dissolving the chemical, and the solution become ther hot or cold. Many hot packs use magnesium sulfa many cold packs use ammonium nitrate. Write reacti show how these strong electrolytes break apart whe dissolve in water.

Solution Concentration: Molarity

- 15. Calculate the molarity of each of these solutions.
- a. A 5.623-g sample of NaHCO₃ is dissolved in enoug ter to make 250.0 mL of solution.
 - b. A 184.6-mg sample of K₂Cr₂O₇ is dissolved in each water to make 500.0 mL of solution.
 - c. A 0.1025-g sample of copper metal is dissolved in 3 of concentrated HNO₃ to form Cu²⁺ ions and then is added to make a total volume of 200.0 mL. (Calc the molarity of Cu2+.)
- 16. Calculate the molarity of each of the following solut
 - a. A 16.45-g sample of NaCl is dissolved in enough wa make 1.000 L of solution.
 - b. An 853.5-mg sample of KIO₃ is dissolved in enough ter to make 250.0 mL of solution.
 - c. A 0.4508-g sample of iron is dissolved in a small am of concentrated nitric acid forming Fe3+ ions in soli and is diluted to a total volume of 500.0 mL. (Calc the molarity of Fe³⁺.)
- 17. Calculate the concentration of all ions present in each of following solutions of strong electrolytes.
 - a. 0.15 M CaCl₂
 - **b.** $0.26 M Al(NO_3)_3$
 - c. 0.25 M K₂Cr₂O₇
 - **d.** $2.0 \times 10^{-3} M \text{ Al}_2(\text{SO}_4)_3$
- 18. Calculate the concentration of all ions present in each of following solutions of strong electrolytes.
 - a. 0.100 mol of Ca(NO₃)₂ in 100.0 mL of solution
 - b. 2.5 mol of Na₂SO₄ in 1.25 L of solution

5.00 g of NH₄Cl in 500.0 mL of solution 00 g K₃PO₄ in 250.0 mL of solution

Which of the following solutions of strong electrolytes conains the largest number of moles of chloride ions: 100.0 mL of 0.30 M AlCl₃, 50.0 mL of 0.60 M MgCl₂, or 200.0 mL of 0.40 M NaCl?

Which of the following solutions of strong electrolytes contains the largest number of ions: 100.0 mL of 0.100 M NaOH, 50.0 mL of 0.200 M BaCl₂, or 75.0 mL of 0.150 M Na₃PO₄?

What volume of a 0.100 M solution of NaHCO₃ contains 0.350 g of NaHCO₃?

How many grams of NaOH are contained in 250.0 mL of a 0.400 M sodium hydroxide solution?

Describe how you would prepare 2.00 L of each of the following solutions.

a. 0.250 M NaOH from solid NaOH

b: 0.250 M NaOH from 1.00 M NaOH stock solution

c; 0.100 M K₂CrO₄ from solid K₂CrO₄

d. 0:100 M K₂CrO₄ from 1.75 M K₂CrO₄ stock solution How would you prepare 1.00 L of a 0.50 M solution of each of the following?

a. H₂SO₄ from "concentrated" (18 M) sulfuric acid

b. HCl from "concentrated" (12 M) reagent

c. NiCl₂ from the salt NiCl₂ · 6H₂O

d, HNO₃ from "concentrated" (16 M) reagent

e. Sodium carbonate from the pure solid

A solution is prepared by dissolving 10.8 g ammonium sulfate in enough water to make 100.0 mL of stock solution. A 10.00mil sample of this stock solution is added to 50.00 mL of water Calculate the concentration of ammonium ions and sulfate ions in the final solution.

Calculate the sodium ion concentration when 70.0 mL of 3.0 M sodium carbonate is added to 30.0 mL of 1.0 M sodium bicarbonate.

A standard solution is prepared for the analysis of fluoxymesterone (C₂₀H₂₉FO₃), an anabolic steroid. A stock solution is first prepared by dissolving 10.0 mg of fluoxymesterone in enough water to give a total volume of 500.0 mL. A 100.0- μ L aliquot (portion) of this solution is diluted to a final volume of 100.0 mL. Calculate the concentration of the final solution in terms of molarity.

A stock solution containing Mn²⁺ ions was prepared by dissolving 1.584 g pure manganese metal in nitric acid and diluting to a final volume of 1.000 L. The following solutions were then prepared by dilution:

For solution A, 50.00 mL of stock solution was diluted to 1000.0 mL.

For solution B, 10.00 mL of solution A was diluted to 250.0 mL.

For solution C, 10.00 mL of solution B was diluted to 500.0 mL.

Calculate the concentrations of the stock solution and solutions A, B, and C.

Precipitation Reactions

When the following solutions are mixed together, what precipitate (if any) will form?

a. $BaCl_2(aq) + Na_2SO_4(aq)$

b. $Pb(NO_3)_2(aq) + KCl(aq)$

c. $AgNO_3(aq) + Na_3PO_4(aq)$

d. NaOH(aq) + Fe $(NO_3)_3(aq)$

When the following solutions are mixed together, what precipitate (if any) will form?

a. $FeSO_4(aq) + KCl(aq)$

b. $Al(NO_3)_3(qq) + Ba(OH)_2(aq)$

c. $CaCl_2(aq) + Na_2SO_4(aq)$

d. $K_2S(aq) + Ni(NO_3)_2(aq)$

For the reactions in Exercise 29, write the balanced molecular equation, complete ionic equation, and net ionic equation. If no precipitate forms, write "No reaction."

32. For the reactions in Exercise 30, write the balanced molecular equation, complete ionic equation, and net ionic equation. If no precipitate forms, write "No reaction."

Write net ionic equations for each of the following.

a. $AgNO_3(aq) + KI(aq) \rightarrow$

b. $CuSO_4(aq) + Na_2S(aq) \rightarrow$

c. $CoCl_2(aq) + NaOH(aq) \rightarrow$

d. NiCl₂(aq) + KNO₃(aq) \rightarrow

Write net ionic equations for each of the following.

a. $AgNO_3(aq) + BaCl_2(aq) \rightarrow$

b. FeSO₄ $(aq) + K_2S(aq) \rightarrow$

c. NaOH(aq) + K₂SO₄(aq) \rightarrow

d. $Hg_2(NO_3)_2(aq) + CaCl_2(aq) \rightarrow$

35. Write net ionic equations for the reaction, if any, that occurs when aqueous solutions of the following are mixed.

a. Ammonium sulfate and barium nitrate

b. Lead(II) nitrate and sodium chloride

c. Sodium phosphate and potassium nitrate

d. Sodium bromide and rubidium chloride

e. Copper(II) chloride and sodium hydroxide

Write net ionic equations for the reaction, if any, that occurs when aqueous solutions of the following are mixed.

a. cobalt(III) chloride and sodium hydroxide

b. silver nitrate and ammonium carbonate

c. $copper(\Pi)$ sulfate and $mercury(\Pi)$ chloride

d. strontium nitrate and potassium iodide

37. A lake may be polluted with Pb2+ ions. What precipitation reaction might you use to test for the presence of Pb2+?

38. A sample may contain any or all of the following ions: Hg_2^{2+} , Ba²⁺, and Mn²⁺. No precipitate formed when an aqueous solution of NaCl or Na2SO4 was added to the sample solution. A precipitate formed when the sample solution was made basic with NaOH. Which ion or ions are present in the sample solution?

Name:	Name:Date:							
	Chem	istry Chapter 4 Re	<u>view</u>					
	cal review for some of the supplementary study to							
1. What is the d	lifference between a non	electrolyte and an el	ectrolyte?					
2. What propert	ty of water enables its m	olecules to interact v	with ions in solution?	-				
3. Classify the f	following, X each box th	nat applies to the con	npound.	* • •				
Compound	Strong electrolyte	Weak Electrolyte	Nonelectrolyte					
HC1								
$C_{12}H_{22}O_{11}$								
LiOH			,					
NaF				1				
NaCl								

4. What is the difference between an ionic compound and a molecular compound?

5. Which of the following compounds are not soluble in water?

NaOH Mg(OH)₂ H₂SO₄

CH₃COOH

	Soluble	Insoluble
ZnSO ₄		
$Hg(NO_3)_2$		
Ca(OH) ₂		
AgClO ₃		
Mn(OH) ₂		

6. Complete the reaction and show the molecular, complete ionic, net ionic equations. Mixing a NaNO ₃ solution with a CuSO ₄ solution.
Molecular:
Complete Ionic:
Net ionic:
7. Which of the following is not a salt? A) NaF B) CaO C) CH ₄ D) KBr
8. Which of the following is a weak acid? A) HBr B) HCl C) HI D) None
9. Which of the following is a weak base? A) LiOH B) NaOH C) AlOH D) HBr
10. Arrange the following species in order of increasing oxidation number of the sulfur atom: H_2S , S_8 , H_2SO_4 , S^{3-} .
<<

10. For the following reaction which species is:				
Oxidized	Reduced:			
Oxidizing Agent :	Reducing Agent:			
4N	$a(s) + O_2(g) \to 2Na_2O(s)$			
11. Give the oxidation number of the	underlined atoms in:			
$\underline{Mg}F_2$ $\underline{Fe}F_7$	<u>C</u> ₂ H ₂	K <u>Mn</u> O ₄		
12. Calculate the mass of KI in grams	required to prepare 5.00 ×	10^2 mL of a 2.80 M solution.		
13. How many moles of MgCl ₂ are pro-	esent in 60.0 mL of 0.100 <i>M</i>	M MgCl $_2$ solution?		
14. How many grams of KOH are pre-	sent in 35.0 mL of a 5.50 <i>M</i>	I solution?		
15. Calculate the molarity of a solution	n of 15.4 g of sucrose (C ₁₂ I	$H_{22}O_{11}$) in 74.0 mL of solution.		
16. Calculate the molarity of a solutio solution.	n of 10.4 g of calcium chlo	ride (CaCl ₂) in 2.20×10^2 mL of		

17. Calculate the volume in $\underline{\mathbf{mL}}$ required to provide 2.14 g of sodium chloride from a 0.270 M solution.
18. Water is added to 25.0 mL of a $0.866 M \mathrm{KNO_3}$ solution until the volume of the solution is exactly 500 mL. What is the concentration of the final solution?
19. You have 505 mL of a 0.125 <i>M</i> HCl solution and you want to dilute it to exactly 0.100 <i>M</i> . How much water should you add? (Think about the formula you are using and what it tells you)
20. Calculate the volume in mL of a 1.420 <i>M</i> NaOH solution required to titrate 25.00 mL of a 2.430 <i>M</i> HCl solution.
21. When aqueous solutions of Na ₂ SO ₄ and Pb(NO ₃) ₂ are mixed, PbSO ₄ precipitates. Calculate the mass of PbSO ₄ formed when 1.25 L of 0.0500 M Pb(NO ₃) ₂ and 2.00L of 0.0250 M Na ₂ SO ₄ are mixed?