Summary of the Kinetics of Zero-Order, First-Order and Second-Order Reactions

Concentration-Time

Equation

Rate Law

Order

Half-Life

0

rate = k

 $[A] = [A]_0 - kt$ Units for k MIs

 $\ln[A] = \ln[A]_0 - kt$

rate = k [A]

Units for k s-1
$$\frac{1}{[A]} = \frac{1}{[A]_0} + kt$$

rate = $k [A]^2$

$$t_{1/2} = \frac{\ln 2}{k}$$

$$t_{1/2} = \frac{1}{MAI_{1}} - \frac{1}{16}$$

Units for k 1/M·s

Name			1		
Period	Date	1 1			

Kinetics

Graphical Methods of Determining Reaction Order and the Rate Constant

First-Order Reactions: (rate is directly proportional to the concentration)

Rate =
$$-\frac{\Delta[R]}{\Delta t} = k[R]$$

using calculus, as the Δt approaches 0, the Rate equation becomes

$$ln\bigg(\frac{[R]_o}{[R]_t}\bigg) = kt$$

which can be rearranged into the "y = mx + b" format

$$ln[R]_t = -kt + ln[R]_o$$

so... IF the reaction is first-order with respect to R,

plotting $ln[R]_t$ versus time results in a straight line with k = -slope

Summary:

Order	Rate Equation	Integrated Rate Equation	Straight Line Plot	Slope	k Units
0	$Rate = k[R]^0$	$[R]_o - [R]_t = kt$	$[R]_t$ vs. t	-k	mol/L·s
1	$Rate = k[R]^1$	$ln([R]_o/[R]_t) = kt$	$ln[R]_t$ vs. t	-k	s ⁻¹
2	$Rate = k[R]^2$	$(1/[R]_t) - (1/[R]_o) = kt$	$1/[R]_t$ vs. t	k	L/mol·s
			memorize this	s/	

Second-Order Reactions	Zero-Order Reactions:
$Rate = -\frac{\Delta[R]}{\Delta t} = k[R]^2$	$Rate = -\frac{\Delta[R]}{\Delta t} = k[R]^0$
$\frac{1}{[R]_t} - \frac{1}{[R]_o} = kt$	$[R]_o - [R]_t = kt$
$1/[R]_t = kt - (1/[R]_o)$	$[R]_t = -kt + [R]_o$

Half-Life and First-Order Reactions: (radioactivity is a first-order reaction)

Recall (from the Nuclear Chemistry chapter) the special case of half-life $(t_{1/2})$

$$ln\left(\frac{[R]_o}{[R]_t}\right) = kt$$
 becomes $ln(2) = kt_{1/2}$
 $ln(2) = 0.693$
so... $k = 0.693/t_{1/2}$ and $t_{1/2} = 0.693/k$

Practice Problem:

Data for the decomposition of N₂O₅ in a particular solvent at 45°C are as follows:

$[N_2O_5]$ (mol/L)	t (min)
2.08	3.07
1.67	8.77
1.36	14.45
0.72	31.28

$ln[N_2O_5]$	1/[N ₂ O ₅]

RATE LAWS

1. Consider the reaction: $2 \text{ NO(g)} + O_2(g) \rightarrow 2 \text{ NO_2(g)}$

The following data were obtained from three experiments using the method of initial rates:

	Initial [NO] mol L-1	Initial [O ₂] mol L ⁻¹	Initial rate NO mol L ⁻¹ s ⁻¹
Experiment 1	0.010	0.010	2.5×10^{-5}
Experiment 2	0.020	0.010	1.0×10^{-4}
Experiment 3	0.010	0.020	5.0×10^{-5}

- a. Determine the order of the reaction for each reactant.
- b. Write the rate equation for the reaction.
- c. Calculate the rate constant.

- d. Calculate the rate (in mol $L^{-1}s^{-1}$) at the instant when [NO] = 0.015 mol L^{-1} and [O₂] = 0.0050 mol L^{-1}
- e. At the instant when NO is reacting at the rate $1.0 \times 10^{-4} \text{ mol L}^{-1}\text{s}^{-1}$, what is the rate at which O₂ is reactant and NO₂ is forming?

2. The reaction $2 \text{ NO(g)} + 2 \text{ H}_2(g) \rightarrow \text{N}_2(g) + 2 \text{ H}_2\text{O(g)}$ was studied at 904 °C, and the data in the table were collected.

	Initial [NO] mol L ⁻¹	Initial [H ₂] mol L ⁻¹	Initial rate N ₂ mol L ⁻¹ s ⁻¹
Experiment 1	0.420	0.122	0.136
Experiment 2	0.210	0.122	0.0339
Experiment 3	0.210	0.244	0.0678
Experiment 4	0.105	0.488	0.0339

- a. Determine the order of the reaction for each reactant.
- b. Write the rate equation for the reaction.
- c. Calculate the rate constant at 904 °C.
- d. Find the rate of appearance of N_2 at the instant when [NO] = 0.350 M and [H₂] = 0.205 M.
- 3. The reaction of ^tbutyl-bromide (CH₃)₃CBr with water is represented by the equation:

$$(CH_3)_3CBr + H_2O \rightarrow (CH_3)_3COH + HBr$$

The following data were obtained from three experiments using the method of initial rates:

	Initial [(CH ₃) ₃ CBr]	Initial [H ₂ O]	Initial rate
	mol L-1	mol L ⁻¹	mol L ⁻¹ min ⁻¹
Experiment 1	5.0 x 10 ⁻²	2.0×10^{-2}	2.0×10^{-6}
Experiment 2	5.0×10^{-2}	4.0 x 10 ⁻²	2.0×10^{-6}
Experiment 3	1.0×10^{-1}	4.0×10^{-2}	4.0×10^{-6}

- a. What is the order with respect to (CH₃)₃CBr?
- b. What is the order with respect to H_2O ?
- c. What is the overall order of the reaction?
- d. Write the rate equation.
- e. Calculate the rate constant, k, for the reaction.

CHAPTER 12 QUESTIONS

MULTIPLE-CHOICE QUESTIONS

Questions 1-3

A+B→C

The following are possible rate laws for the hypothetical reaction given above.

(A) Rate = \(i/A\)
(B) Rate = \(i/A\)^2
(C) Rate = \(i/A\)/[B]
(D) Rate = \(i/A\)/[B]
(E) Rate = \(i/A\)/[B]?

1. This is the rate law for a first order reaction. 2) This is the rate law for a reaction that is second order with respect to B.

This is the rate law for a third order reaction.

Questions 4-6

.A+B→C

The following are possible rate laws for the hypothetical reaction given above.

(A) Rate = k[A]
(B) Rate = k[B]²
(C) Rate = k[A][B]
(D) Rate = k[A]²[B]
(B) Rate = k[A]²[B]²

(4) When [A] and [B] are doubled, the initial rate of reaction will increase by a factor of eight.

5: When [A] and [B] are doubled, the initial rate of reaction will increase by a factor of two. When [A] is doubled and [B] is held constant, the initial rate of reaction will not

KINGTICS 👼 207

Lower Contract

A+2B→2C

The following results were obtained in experiments designed to study the rate of the reaction

	Pittial Cor	Initial Concentration	Initial Rate of	
Experiment	EA) (Inje	(ano)/L)	Disappearance of A (Misec)	
, ш	0:05	.05	3.0 × 10-3	
Ŋ	0.05	0.10	6.0 × 10-1	
 Ŀ	0.10	0.10	1.2 × 10-2	
 .4	0.20	0.10	2.4 × 10-2	. 5

- Đ law for the reaction. Determine the order of the reaction with respect to each of the reactants, and write the rate
- 3 Calculate the value of the rate constant, k, for the reaction. Include the units.
- Ō If another experiment is attempted with [A] and [B], both 0.02-molar, what would be the initial rate of disappearance of A?
- 9 The following reaction mechanism was proposed for the reaction above:

- (i) Show that the mechanism is consistent with the balanced reaction.
- Show which step is the rate-determining step, and explain your choice.

$$2 \operatorname{NO}(g) + \operatorname{Br}_2(g) \rightarrow 2 \operatorname{NOBr}(g)$$

The following results were obtained in experiments designed to study the rate of the reaction

1,9 × 10-1	0.04	0.02	Ç	
3.8×10-1	0.02	0.04	2	
-01×9′6	0.02	0.02	ئد	
of NOBr (M/sec)	[Bz]	NO	Experiment	
Initial Rate of	Initial Concentration	Initial Cor	-	

- (E) Write the rate law for the reaction.
- 3 Calculate the value of the rate constant, k, for the reaction. Include the units.
- <u>@</u> In experiment 2, what was the concentration of NO remaining when half of the original amount of $B_{\rm T}$ was consumed?

<u>a</u> Which of the following reaction mechanisms is consistent with the rate law established in (a)? Explain your choice.

$$N_2O_2 + Br_2 \rightarrow 2 \text{ NOBr}$$
 (slow)

II.
$$Br_2 \rightarrow B\dot{r} + Br$$
 (slow)

$$2(NO + Br \rightarrow NOBr)$$
 (fast)

 $N_2O_g(g) \rightarrow 4NO_2(g) + O_2(g)$

Dinitrogen pertoxide gas decomposes according to the equation above. The first-order reaction was allowed to proceed at 40°C and the data below were collected.

.0.109	0.151	0.209	0.289	0.400	[N,O,J (M)
ROO	60.0	40.0	20.0	0.0	Time (min)

- a) in the table. Include units with your answer Calculate the rate constant for the reaction using the values for concentration and time given
- 3 After how many minutes will $[N_2O_3]$ be equal to 0.350 M?
- Ō What will be the concentration of N Q_{χ} after 100 minutes have elapsed?
- â Calculate the initial rate of the reaction. Include units with your answer.
- Ē What is the half-life of the reaction?

2A+B,→C+D

The following results were obtained in experiments designed to study the rate of the reaction above:

Experiment	Initial Con (mol	ncentration les/L)	Initial Rate of Formation of D (M/min)
,,	0.10	0.1.0	1.5×10 ⁻³
23	0.20	0.20	3.0×10^{-3}
ر ده	0.20	0.40	6.0 × 10-3

Write the rate law for the reaction.

<u>e</u>

- ਭ Calculate the value of the rate constant; k, for the reaction. Include the units.
- If experiment 2 goes to completion, what will be the final concentration of D? Assume that the volume is unchanged over the course of the reaction and that no D was present at the

Which of the two lines in the diagram above shows the relationship of $\ln[A]$ to time for a first order reaction with the following rate law?

Rate = k[A]

Concentration (moles/L)

Time

Œ

Concentration (moles/L) B
A
Time

Which of the two graphs above shows the changes in concentration over time for the following reaction?

A --> B

214 DE CRACKING THE AP CHEMISTRY EXAM

Which of the two lines in the diagram above shows the relationship of $\ln k$ to $\frac{1}{T}$ for a reaction? How is the slope of the line related to the activation energy for the reaction?

- Use your knowledge of kinetics to explain each of the following statements:
- (a) An increase in the temperature at which a reaction takes place causes an increase in reaction rate.
- (b) The addition of a catalyst increases the rate at which a reaction will take place.
- (c) A catalyst that has been ground into powder will be more effective than a solid block of the same catalyst.
- (d) Increasing the concentration of reactants increases the rate of a reaction.

AP Chemistry Chapter 12 Kinetics review

- 1. Which of the following does NOT influence the speed of a chemical reaction?
 - a) concentration of reactants
 - b) nature of reactants
 - c) temperature
 - d) presence of a catalyst
 - e) none of these
- 2. What would cause the change in the kinetic energy diagrams as shown?

- a) increasing the ΔH
- b) decreasing the temperature
- c) increasing the surface area
- d) addition of a catalyst
- e) increasing the concentration of reactant
- 3. A time vs. concentration graph is presented below for the reaction $A \rightarrow B$. What is the rate of appearance of 'B' 20 seconds after the start of the reaction? (hint : tangent)

- a) 0.050 mol/L·s
- d) 0.010 mol/L·s
- b) 3.2 mol/L s
- e) 9.8 mol/L·s
- c) 2.2 mol/L·s

4.	The reaction $3O_2 \rightarrow 2O_3$ is proceeding with a rate of disappearance of O_2 equal to 0.60 mol/L·s.							
	What is the rate of appearance of O ₃ , in mol/L·s?							
	a) 0.60	d) 0.90						
	b) 0.40	e) 1.20			r			
	c) 0.10							
5.	A reaction has the rate law Rate = $k[A]^2[B]$. What is the overall order of the reaction?							
	a) 0 b) 2 c)) 1 d) 4 e) 3						
6.	What are the correct units for a second order rate constant?							
	a) mol/L·s	d) $L^2/\text{mol}^2 \cdot s$						
	b) 1/s	e) mol ² /L ² ·s						
	c) L/mol·s							
7.	The reaction $\Gamma + OC\Gamma \rightarrow IO^- + C\Gamma^-$ is first order with respect to Γ^- and first order with respect to Γ^- . The rate constant is 6.1×10^{-2} L/mol·s. What is the rate of reaction when $[\Gamma] = 0.10$ M and $[OC\Gamma]$							
	$= 0.20 \underline{M}?$	18 0.1 X 10 " L/IIIOPS.	. What is the face	s of reaction when fr	1 - 0.10 <u>M.</u> and [OCI	1		
	a) 2.4 x 10 ⁻⁴ <u>M</u> /s	d) 1.2 x 10 ⁻⁴ <u>M</u> /s						
	b) 1.2 x 10 ⁻³ <u>M</u> /s	e) 2.4 x 10 ⁻⁵ <u>M</u> /s	· ·					
	c) 6.1 x 10 ⁻³ <u>M</u> /s				,			
8.	A reaction and its rate law are given below. When $[C_4H_6] = 2.0 \underline{M}$, the rate is 0.106 \underline{M} /s.							
	What is the rate when $[C_4H_6] = 4.0 \text{ M}$?							
	$2 C_4H_6 \rightarrow C_8H_{12}$	$Rate = k[C_4H_6]^2$						
	a) 0.053 <u>M</u> /s	d) 0.424 <u>M</u> /s		•				
	b) 0.212 <u>M</u> /s	e) 0.022 <u>M</u> /s						
	c) 0.106 <u>M</u> /s							
9.	The rate law for the	•						
			$(g) + O_2(g) \rightarrow 2N(g)$	-				
	is Rate = $k[NO]^2[O_2]$. What happens to the rate when the concentration of NO is doubled?							
	a) the rate doubles	d) the rate is halve	xd.	,				
	b) the rate triples	e) none of these						
	c) the rate quadruple	es						
	c) the rate quadruple	es						

10. Below is some rate data for the hypothetical reaction, $2A + B \rightarrow C$. What is the rate law for this reaction?

Experiment	[A] ₀	[B] _o	Rate (M/s)
1	2.0 <u>M</u>	1.0 <u>M</u>	0.100
2	2.0 <u>M</u>	2.0 <u>M</u>	0.400
3	4.0 <u>M</u>	1.0 <u>M</u>	0.100

- a) Rate = k[A][B]
- d) Rate = $k[A]^2[B]^2$
- b) Rate = $k[A]^2[B]$ e) Rate = $k[B]^2$
- c) Rate = $k[A][B]^2$
- 11. The acid catalyzed decomposition of hydrogen peroxide is a first order reaction with the rate constant given below. For an experiment in which the starting concentration of hydrogen peroxide is 0.110 M, what is the concentration of H_2O_2 450 minutes after the reaction begins?

 $2H_2O_2 \rightarrow 2H_2O + O_2$ k=1.33 x 10^{-4} min⁻¹

- a) 0.0961 M
- d) 0.00658 M
- b) 0.104 M
- e) 0.0156 M
- c) 0.117 M
- 12. What is the rate constant for a first order reaction for which the half-life is 85.0 sec?
 - a) 0.00814 sec⁻¹
- d) 0.0118 sec⁻¹
- b) 4.44 sec⁻¹
- e) 58.9 sec⁻¹
- c) 0.170 sec⁻¹
- 13. What fraction of a reactant remains after 3 half-lives of a first order reaction?
 - a) 1/2
- d) 1/8
- b) 1/3
- e) 1/12
- c) 1/6
- 15. According to collision theory, which of the following factors does NOT influence the rate of reaction?
 - a) collision frequency
 - b) collision energy
 - c) collision orientation
 - d) collision rebound direction
 - e) none of these

Use the Diagram to answer questions 16-19

- 16. What distance corresponds to the activation energy for the reaction of X to Y?
- 17. What letter represents the Reactants?
- 18. What letter represents the products?
- 19. What letter represents the enthalpy for this reaction?
- 20. At what point on the potential energy diagram given below does the transition state (activated complex) occur?

a) a

d) d

b) b

e) e

c) c