Chapter 14/15 Chemistry Test

Multiple Choice: Select the best answer

1. Consider the reaction:

$$CaCl_2(s) + 2H_2O(g) \iff CaCl_2 \cdot 2H_2O(s)$$

The equilibrium constant for the reaction as written is

$$K = \frac{[\text{CaCl}_2 \cdot 2\text{H}_2\text{O}]}{[\text{CaCl}_2][\text{H}_2\text{O}]^2}$$

D)
$$K = [H_2O]^2$$

$$K = \frac{1}{[H_2O]^2}$$

$$K = \frac{1}{[H_2O]^2}$$

$$K = \frac{[\text{CaCl}_2 \cdot 2\text{H}_2\text{O}]}{[\text{H}_2\text{O}]^2}$$

$$K = \frac{1}{2[H_2O]}$$

2. Consider the following equilibrium:

$$H_2(g) + I_2(s) \iff 2HI(g) \quad \Delta H = +68.0 \text{ kJ/mol}$$

The proper K_{eq} expression is:

- 3. Which of the following is true for a system whose equilibrium constant is relatively small?
 - A) It will take a short time to reach equilibrium.
 - **B**) It will take a long time to reach equilibrium.
 - C) The equilibrium lies to the left.
 - **D)** The equilibrium lies to the right.
 - E) Two of these.
- 4. Equilibrium is reached in chemical reactions when:
 - A) the rates of the forward and reverse reactions become equal.
 - **B**) the concentrations of reactants and products become equal.
 - C) the temperature shows a sharp rise.
 - **D)** all chemical reactions stop.
 - **E**) the forward reaction stops.

7. Calculate th	ne [H+] in a solution that has a pH of 11.70 A) 2.3 M B) 11.7 M C) 5.0×10^{-3} M	D) 2.0 × 10 ⁻¹² M E) none of these				
8. The pH of a solution at 25°C in which $[OH-] = 3.4 \times 10^{-5}$ M is:						
A) 4.5 B) 10.5 C) 9.5 D) 6.3 E) none of these						
 9. Which of the following is not true for a solution at 25°C that has a hydroxide concentration of 2.5 × 10⁻⁶ M? A) K_w = 1 × 10⁻¹⁴ B) The solution is acidic. C) The solution is basic. D) The [H] is 4 × 10⁻⁹ M. E) The K_w is independent of what the solution contains. 						
	a 0.100 M solution of an aqueous weak acweak acid is: B) 7.2×10^{-5} C) 4.0×10^{-6} D) 3.2					

6. The equilibrium constants (K_a) for HCN and HF in H₂O at 25°C are 6.2×10^{-10} and

D) OH-/ H₃O+

E) none of these

D $) HF > HCN > H_2O$

E) none of these

5. Which of the following is a conjugate acid/base pair?

 7.2×10^{-4} , respectively. The relative order of <u>strengths</u> is:

A) $HF > H_2O > HCN$

B) $H_2O > HF > HCN$

C) $HCN>HF>H_2O$

A) HCl/OCl-B) H₂SO₄/SO₄2+

C) NH_4+/NH_3

	A) 12.000	B) 1.398	C) 2.000	D) 12.60	D2 E) none of these
	rogenphosphate would look lie A) H ₃ PO ₄ , P B) H ₃ PO ₄ , H C) H ₂ PO ₄ -, 1	ke what, re O ₄ 3– IPO ₄ 2–		: D) 1	conjugate acid and HPO ₄ 2–, PO ₄ 3– HPO ₄ 2–, H ₃ PO ₄
Essays: Show 14. a. Calculate th					
b. What is the	percent ioniza	tion of HF	above?		
c. Using the K equilibrium for and your produ	r the reaction.	Label your			
15. Circle the l	Lewis Acids ar	nd Box the	Lewis Bas	es	
PF ₃	BF ₃	NH	I ₃ S	SO_2	
16. Write a rea	ction for Sulfu	ric acid rea	ecting with	water. Lah	el the acid, base.

conjugate acid, and conjugate base.

12. A 0.400-g sample of NaOH(s) is added to enough water to make 250.0 mL of solution. The pH of this solution is:

17. Answer the questions using the titration curve.

- a. Place a dot (•) on the curve at the equivalence point.
- b. The pH at the equivalence point is _____
- c. Based on the curve above how would you set up this experiment? Circle the correct choices in diagram below accordingly.

