Chapter 14/15 Chemistry Test ## Multiple Choice: Select the best answer **1.** Consider the reaction: $$CaCl_2(s) + 2H_2O(g) \iff CaCl_2 \cdot 2H_2O(s)$$ The equilibrium constant for the reaction as written is $$K = \frac{[\text{CaCl}_2 \cdot 2\text{H}_2\text{O}]}{[\text{CaCl}_2][\text{H}_2\text{O}]^2}$$ **D)** $$K = [H_2O]^2$$ $$K = \frac{1}{[H_2O]^2}$$ $$K = \frac{1}{[H_2O]^2}$$ $$K = \frac{[\text{CaCl}_2 \cdot 2\text{H}_2\text{O}]}{[\text{H}_2\text{O}]^2}$$ $$K = \frac{1}{2[H_2O]}$$ 2. Consider the following equilibrium: $$H_2(g) + I_2(s) \iff 2HI(g) \quad \Delta H = +68.0 \text{ kJ/mol}$$ The proper K_{eq} expression is: - 3. Which of the following is true for a system whose equilibrium constant is relatively small? - A) It will take a short time to reach equilibrium. - **B**) It will take a long time to reach equilibrium. - C) The equilibrium lies to the left. - **D)** The equilibrium lies to the right. - E) Two of these. - 4. Equilibrium is reached in chemical reactions when: - A) the rates of the forward and reverse reactions become equal. - **B**) the concentrations of reactants and products become equal. - C) the temperature shows a sharp rise. - **D)** all chemical reactions stop. - **E**) the forward reaction stops. | 7. Calculate th | ne [H+] in a solution that has a pH of 11.70
A) 2.3 M
B) 11.7 M
C) 5.0×10^{-3} M | D) 2.0 × 10 ⁻¹² M
E) none of these | | | | | |---|---|--|--|--|--|--| | 8. The pH of a solution at 25°C in which $[OH-] = 3.4 \times 10^{-5}$ M is: | | | | | | | | A) 4.5 B) 10.5 C) 9.5 D) 6.3 E) none of these | | | | | | | | 9. Which of the following is not true for a solution at 25°C that has a hydroxide concentration of 2.5 × 10⁻⁶ M? A) K_w = 1 × 10⁻¹⁴ B) The solution is acidic. C) The solution is basic. D) The [H] is 4 × 10⁻⁹ M. E) The K_w is independent of what the solution contains. | | | | | | | | | a 0.100 M solution of an aqueous weak acweak acid is:
B) 7.2×10^{-5} C) 4.0×10^{-6} D) 3.2 | | | | | | 6. The equilibrium constants (K_a) for HCN and HF in H₂O at 25°C are 6.2×10^{-10} and **D)** OH-/ H₃O+ E) none of these **D** $) HF > HCN > H_2O$ E) none of these 5. Which of the following is a conjugate acid/base pair? 7.2×10^{-4} , respectively. The relative order of <u>strengths</u> is: A) $HF > H_2O > HCN$ **B**) $H_2O > HF > HCN$ C) $HCN>HF>H_2O$ A) HCl/OCl-B) H₂SO₄/SO₄2+ C) NH_4+/NH_3 | | A) 12.000 | B) 1.398 | C) 2.000 | D) 12.60 | D2 E) none of these | |---|--|---|------------------|------------------|--| | | rogenphosphate would look lie A) H ₃ PO ₄ , P B) H ₃ PO ₄ , H C) H ₂ PO ₄ -, 1 | ke what, re
O ₄ 3–
IPO ₄ 2– | | :
D) 1 | conjugate acid and
HPO ₄ 2–, PO ₄ 3–
HPO ₄ 2–, H ₃ PO ₄ | | Essays: Show
14.
a. Calculate th | | | | | | | b. What is the | percent ioniza | tion of HF | above? | | | | c. Using the K equilibrium for and your produ | r the reaction. | Label your | | | | | 15. Circle the l | Lewis Acids ar | nd Box the | Lewis Bas | es | | | PF ₃ | BF ₃ | NH | I ₃ S | SO_2 | | | 16. Write a rea | ction for Sulfu | ric acid rea | ecting with | water. Lah | el the acid, base. | conjugate acid, and conjugate base. 12. A 0.400-g sample of NaOH(s) is added to enough water to make 250.0 mL of solution. The pH of this solution is: 17. Answer the questions using the titration curve. - a. Place a dot (•) on the curve at the equivalence point. - b. The pH at the equivalence point is _____ - c. Based on the curve above how would you set up this experiment? Circle the correct choices in diagram below accordingly.