Chapter 14 Take Home Test

Multiple Choice: select the best answer for each question

1. In the laboratory, $H_2(g)$ can be produced by adding which of the following to 1.0 M HCl(aq)?

- I. 1 M NH3(aq)
- II. Zn(s)
- III. NaHCO3(s)
 - (A) I only
 - (B) II only
 - (C) III only
 - (D) I and II only
 - (E) I, II, and III

At 25°C, aqueous solutions with a pH of 8 have hydroxide concentration, (OH·), of

- (A) $1 \times 10^{-14} M$
- (B) 1 x 10⁻⁸ M
- (C) $1 \times 10^{-6} M$
- (D) 1.0 M
- (E) 8.0 M

2 NH₂ ↔ NH₄++ NH₂

- '. In liquid ammonia, the reaction represented above occurs. In the reaction, $N\!H_{i}$
 - (A) a catalyst
 - (B) both an acid and a base
 - (C) the conjugate acid of NH
 - (D) the reducing agent
 - (E) the oxidizing agent

 HSO_4 + $H_1O \leftrightarrow H_1O^+ + SO_4^2$

- ! In the equilibrium represented above, the species that act as bases include which of the following?
 - I. HSO₄-
 - IL H_O III. SO₄2-

 - (A) II only (B) III only
 - (C) I and II
 - (D) I and III
 - (E) II and III

All of the following species can function as Bransted-Lowry bases in solution EXCEPT

- (A) H,O
- (B) NH₃
- (C) S2-
- (D) NH.+
- P) HCO,

 $\text{HC}_2\text{H}_3\text{O}_2(aq) + \text{CN}(aq) \longleftrightarrow \text{HCN}(aq) + \text{C}_2\text{H}_3\text{O}_2(aq)$

The reaction represented above has an equilibrium constant equal to $3.7 \times 10^{\circ}$. Which of the following can be concluded from this information?

- (A) CN (aq) is a stronger base than C,H,O, (aq).
- (B) HCN(aq) is a stronger acid than $HC_2H_3O_2(aq)$.
- (C) The conjugate base of CN(aq) is $C_2H_3O_2(aq)$.
- (D) The equilibrium constant will increase with an increase in temperature.
- (E) The pH of a solution equimolar amounts of CN (aq) and HC,H,O,(aq) is 7.0.

Writing chemical reactions. Please write balanced net ionic equations as you would on the AP test.

- (A) A 0.1 M nitrous acid solution is added to the same volume of a 0.1 M sodium hydroxide solution
- A Hydrogen iodide gas is bubbled into a solution of lithium carbonate:
- (h) Concentrated hydrochloric acid is added to a solution of sodium sulfide:
- Solid calcium carbonate is added to a solution of ethanoic (acetic) acid
- Boron trifluoride gas is added to ammonia gas:
- Sulfur trioxide gas is bubbled into a solution of sodium hydroxide:
 - A solution of ethanoic (acetic) acid is added to a solution of barium hydroxide:
 - (a) Ammonia gas is bubbled into a solution of hydrofluoric acid:
 - Hydrogen phosphide (phosphine) gas is added to boron trichloride gas:

Free Response Questions

- (i) Excess nitric acid is added to solid calcium carbonate.
 - (ii) Briefly explain why statues made of marble (calcium carbonate) displayed outdoors in urban areas are deteriorating.

 $K_{\rm a} = [{\rm H_3O^+}][{\rm OCl^-}]/[{\rm HOCl}] = 3.2 \times 10^{-9}$

- Hypochlorous acid, HOCl, is a weak acid in water. The K_a expression for HOCl is shown above.
 - (a) Write a chemical equation showing how HOCl behaves as an acid in water.