Name:	48	PHS
Mame:		

Date:		

Chapter 13 Review

1. write the equilibrium expression for each of the following

a.
$$2NO(g) + O_2(g) \longleftrightarrow 2NO_2(g)$$

b. $Ag^+(aq) + F(aq) \longleftrightarrow AgI(\underline{s})$

c.
$$Fe^{3+}(aq) + 3OH(aq) \leftrightarrow Fe(OH)_3$$
 (S)

Calculate the equilibrium constant K at 25°C for the reaction

 $2NO(g) + O_2(g) \leftrightarrow 2NO_2(g)$

If the equilibrium concentrations are NO = 6.5° atm $O_2 = 4.5^{\circ}$ atm $NO_2 = 0.55$ atm

$$K = [NO_3]^2 = [-0.55]^2$$

$$[NO]^2[O_3] [0.5 \times 10^5]^2[4.5 \times 10^5]$$

3. Of the equilibrium constant at 444°C for 2HI (g) \longleftrightarrow H₂(g) + I₂(g) is 1.39 x 10⁻², find the equilibrium constant for the reverse reaction at 444°C.

reverse

4. For each value of K predict the effect on the reaction. $K = 10^{10}$

K = 10° = Far right / Forward

K = 10° = Far left / Reverse

Œ.	9. Given the reaction of methane and water below $CH_4 + H_2O \longleftrightarrow CO(1) + 3H_2(g)$ $K = 5.67$
	predict what direction the system will shift in order to reach equilibrium given the following initial values of Q.
	a. Q=11.85 Q>K Reverse/Left
	b. Q=3.8 x 10 ⁻⁴ Q L K Forward/Right?
	c. Q=5.67 Q=K =Lib
t gaj	10. The reaction of carbon disulfide with chloride is as follows $CS_2(g) + 3Cl_2(g) \longleftrightarrow CCl_4(g) + S_2Cl_2(g) + AH = -238 \text{ kJ}$
. *	Predict the effect of the following change to the system on the direction of the equilibrium. a. The pressure on the system is doubled by halving the volume
	Forward/Kight
	b. CCl ₄ is removed as it is generated Forward / Right
	c. Heat is added to the system
	Reverse/Left
	11. Given the following reaction at equilibrium, $Cl_2(g) + 3F_2(g) \longleftrightarrow 2CIF_3(g)$
	a. Predict the effect if the pressure were reduced at a constant temperature. Shiff Left (fixed)
$^{\prime\prime}2$	b. Predict the effect if the volume were reduced by increasing the pressure at a constant
	temperature.
800 m	1PIV Shift Right